

COURSE OUTLINE

Time(s):

ELEC 412/ELEC547 – Electronic Devices: II

Term - SPRING 2015 (201501)

Labs

Instructor

Dr. Dr. H.L. Kwok Phone: 250-7212350 E-mail: hlkwok@ece.uvic.ca Office Hours Days: T and F Time: 14:30-15:00 Location: EOW425

Lectures

 A-Section(s):
 A01/A02 CRN 21094/5 ; 21129

 Days:
 TWF

 Time:
 1330-1420

 Location:
 DSBC128

Required Text

Title: Electronic materials Author: H.L. Kwok Publisher: Trans tech Publ. Year: 2010

Optional Text

Title: Physics of Semiconductor Devices Author: M. Shur Publisher: Prentice-Hall Year: 1990

Location: ELW

B-Section(s): Days:

Reference:

Title: Semiconductor devices, Physics and Technology Author: S.M. Sze Publisher: J.Wiley Year: 1985

Assessment:

Assignments:	10%	
Mid-term	2 x 25%	Date: Feb.4 (Wed.) and March 4 (Wed.)
Final	40%	

Due Dates for Assignments:

To be decided (normally 1 week after the assignments are given)

The final grade obtained from the above marking scheme will be based on the following percentage-to-grade point conversion:

Passing	Grade	Percentage for	
Grades	Point	Instructor Use Only	
	Value		
A+	9	90 - 100	
А	8	85 – 89	
A-	7	80 - 84	
B+	6	77 – 79	
В	5	73 – 76	
В-	4	70 – 72	
C+	3	65 – 69	
С	2	60 - 64	
D	1	50 – 59	
Failing	Grade	Percentage for	Description
Grades	Point	Instructor Use Only	
	Value		
E	0	0 - 49	Fail, *Conditional supplemental exam.
			(For undergraduate courses only)
F	0	0 - 49	Fail, no supplemental.
N	0	0 - 49	Did not write examination, Lab or otherwise complete
			course requirements by the end of term or session; no
			supplemental exam.

*Assignment of E grade will be at the discretion of the Course Instructor.

The rules for supplemental examinations are found on page 80 of the current 2014/15 Undergraduate Calendar.

Term in which	Application Deadline for	Supplemental Exam Date
E Grade Was Obtained	Supplemental Exam	
First term of	February 28 in the following term	First week of following May
Winter Session (Sept – Dec)		
Second term of	June 30 in the following term	First week of following September
Winter Session (Jan – Apr)		
Summer Session	October 31 in the following term	First week of following January
(May – Aug)		

Deferred exams will normally be written at the start of the student's next academic term; i.e., approximately 4 months following the deferral of the exam.

Course Description

1. Course Objectives

This course deals with the principle of operation and design issues related to modern electronic devices. The advancement of electronics has been primarily due to the invention of new devices and it is desirable for practicing engineers to have an updated perspective and understanding on state-of-the-art electronic devices and the future trends.

2. Learning Outcomes

LO-1: Study the operation of advanced bipolar and field-effect transistors

SLO-1.1: Examine the state-of-the-art transistors, their performance and operation in the context of Very-Large Scale Integration Circuits

SLO-1.2: Analyze the physical limitations and processing issues

SLO-1.3: Describe methodologies to improve potentially transistor operation and factors to lower manufacturing cost

LO-2: Study the operation of photonic and opto-electronic devices

SLO-2.1: Examine the relationship between light properties and material properties with emphases on device applications

SLO-2.2: Analyze the design and operation of the state-of-the-art opto-electronic devices

SLO-2.3: Describe novel opto-electronic devices and methodologies to improve performance and to lower cost

LO-3: Study the operation of organic semiconductor devices and their future trends

SLO-3.1: Describe the properties of organic semiconductors and their processing techniques

SLO-3.2: Analyze the design and operation of organic semiconductor devices

SLO-3.3: Examine the merits of organic semiconductor devices and the potential of developing novel devices

LO-4: Study the principles, construction and design of lasers and related applications

SLO-4.1: Understand the basic operation of solid-state lasers

SLO-4.2: Examine different laser applications

LO-5: Study the operation of display devices; thin-film devices; imaging devices; energy conversion devices; transducers; and micro-machines and interfacing

SLO-5.1: Understand the operation of different display and imaging devices including liquid crystal displays; charge-coupled imaging devices and medical imagers

SLO-5-2: Describe energy conversion devices including solar cells, thermoelectric devices

SLO-5-3: Examine the design and operation of transducers, micro-machines and their interfacing

SLO-5-4: Study the operation and construction of sensor arrays and related system design

3. Syllabus

Topics:

Operation of bipolar and field-effect devices in VLSI deign

Photonic and optoelectronic devices Organic semiconductor devices and their upcoming trends Principles, construction and design of lasers and related light sources Display devices, thin-film devices, imaging devices, transducers and micro-machines Interfacing, sensor arrays and related system-level design

Note to Students:

Students who have issues with the conduct of the course should discuss them with the instructor first. If these discussions do not resolve the issue, then students should feel free to contact the ECE Chair by email or the ECE Chair's Secretary <u>eceasst@uvic.ca</u> to set up an appointment.

Accommodation of Religious Observance

See http://web.uvic.ca/calendar2014/GI/GUPo.html

Policy on Inclusivity and Diversity

See http://web.uvic.ca/calendar2014/GI/GUPo.html

Standards of Professional Behaviour

You are advised to read the Faculty of Engineering document Standards for Professional Behaviour at <u>http://www.uvic.ca/engineering/assets/docs/professional-behaviour.pdf</u> which contains important information regarding conduct in courses, labs, and in the general use of facilities.

Cheating, plagiarism and other forms of academic fraud are taken very seriously by both the University and the Department. You should consult

http://web.uvic.ca/calendar2014/FACS/UnIn/UARe/PoAcI.html for the UVic policy on academic integrity.